Impact of physical activity on physical function, mitochondrial energetics, ROS production, and Ca2+ handling across the adult lifespan in men

Fiche du document

Date

10 janvier 2025

Type de document
Périmètre
Langue
Identifiants
  • ISIDORE Id:  10670/1.e1c950...
  • Cefis, Marina; Marcangeli, Vincent; Hammad, Rami; Granet, Jordan; Leduc-Gaudet, Jean-Philippe; Gaudreau, Pierrette; Trumpff, Caroline; Huang, Qiuhan; Picard, Martin; Aubertin-Leheudre, Mylènne; Bélanger, Marc; Robitaille, Richard; Morais, José A. et Gouspillou, Gilles (2025). « Impact of physical activity on physical function, mitochondrial energetics, ROS production, and Ca2+ handling across the adult lifespan in men ». Cell Reports Medicine, 6(101968).
Relations

Ce document est lié à :
http://archipel.uqam.ca/18468

Ce document est lié à :
https://www.cell.com/cell-reports-medicine/fulltex [...]

Licence




Citer ce document

Marina Cefis et al., « Impact of physical activity on physical function, mitochondrial energetics, ROS production, and Ca2+ handling across the adult lifespan in men », UQAM Archipel : articles scientifiques, ID : 10670/1.e1c950...


Métriques


Partage / Export

Résumé 0

Aging-related muscle atrophy and weakness contribute to loss of mobility, falls, and disability. Mitochondrial dysfunction is widely considered a key contributing mechanism to muscle aging. However, mounting evi- dence positions physical activity as a confounding factor, making unclear whether muscle mitochondria accumulate bona fide defects with aging. To disentangle aging from physical activity-related mitochondrial adaptations, we functionally profiled skeletal muscle mitochondria in 51 inactive and 88 active men aged 20– 93. Physical activity status confers partial protection against age-related decline in physical performance. Mitochondrial respiration remains unaltered in active participants, indicating that aging per se does not alter mitochondrial respiratory capacity. Mitochondrial reactive oxygen species (ROS) production is unaffected by aging and higher in active participants. In contrast, mitochondrial calcium retention capacity decreases with aging regardless of physical activity and correlates with muscle mass, performance, and the stress-respon- sive metabokine/mitokine growth differentiation factor 15 (GDF15). Targeting mitochondrial calcium handling may hold promise for treating aging-related muscle impairments.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines