Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda

Fiche du document

Date

1 septembre 2023

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2023.09.026

Ce document est lié à :
info:eu-repo/grantAgreement//952215/EU/Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization/TAILOR

Ce document est lié à :
info:eu-repo/grantAgreement//EC GA number 822214/EU/NeEDS – Network of European Data Scientists - A Research and Innovation Staff Exchange (RISE) project under the Marie Skłodowska-Curie Program/NeEDS

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess




Citer ce document

Koen W. de Bock et al., « Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1016/j.ejor.2023.09.026


Métriques


Partage / Export

Résumé En

The ability to understand and explain the outcomes of data analysis methods, with regard to aiding decision-making, has become a critical requirement for many applications. For example, in operational research domains, data analytics have long been promoted as a way to enhance decision-making. This study proposes a comprehensive, normative framework to define explainable artificial intelligence (XAI) for operational research (XAIOR) as a reconciliation of three subdimensions that constitute its requirements: performance, attributable, and responsible analytics. In turn, this article offers in-depth overviews of how XAIOR can be deployed through various methods with respect to distinct domains and applications. Finally, an agenda for future XAIOR research is defined.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines