Kinetic, equilibrium and thermodynamic modelling of the sorption of metals from aqueous solution by a silica polyamine composite

Fiche du document

Date

1 janvier 2013

Discipline
Type de document
Périmètre
Langue
Identifiant
Source

Water SA

Organisation

SciELO



Sujets proches En

Sorption

Citer ce document

H Tutu et al., « Kinetic, equilibrium and thermodynamic modelling of the sorption of metals from aqueous solution by a silica polyamine composite », Water SA, ID : 10670/1.mranbo


Métriques


Partage / Export

Résumé 0

Batch sorption studies were conducted to assess the potential of a phosphonated silica polyamine composite (BPAP) to remove metals (Co, Cu, Fe, Mg, Mn, Ni, U and Zn) from mine waters. The metal adsorption showed a good Langmuir isotherm fit. Ni and Mn fitted both the Freundlich and Langmuir isotherms. The activation energies (Ea) of Co, Mg and Ni ranged between 5 and 40 kJ-mol-1, signifying physisorption while U showed a chemisorption type of adsorption (with Ea > 50 kJ-mol-1). Cu and Fe on the other hand gave negative Ea values, indicating their preference to bind to low-energy sites. The pseudo-second-order kinetic model provided the best correlation of the experimental data, except for Mg and Ni for which the pseudo-first-order model and the Elovich model gave a better fit, respectively. Adsorption was almost constant over a wide pH regime and increased with time. Adsorption increased with concentration of the metals with the exception of Co, Fe and Ni which displayed about a 40% drop at a concentration of 200 mg.l-1. Desorption experimental data gave poor results except for U which showed 99.9% desorption.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en