The homeomorphism of Minkowski space and the separable complex Hilbert space: the physical, mathematical and philosophical interpretations

Fiche du document

Date

20 novembre 2021

Type de document
Périmètre
Langue
Identifiants
Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess




Citer ce document

Vasil Penchev, « The homeomorphism of Minkowski space and the separable complex Hilbert space: the physical, mathematical and philosophical interpretations », HAL-SHS : philosophie, ID : 10670/1.thqrj1


Métriques


Partage / Export

Résumé 0

A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré's conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized and interpreted in relation to the pseudo-Riemannian space of general relativity therefore allowing for both mathematical and philosophical interpretations of the force of gravitation due to the mismatch of choice and ordering and resulting into the "curving of information" (e.g. entanglement). Mathematically, that homeomorphism means the invariance to choice, the axiom of choice, well-ordering, and well-ordering "theorem" (or "principle") and can be defined generally as "information invariance". Philosophically, the same homeomorphism implies transcendentalism once the philosophical category of the totality is defined formally. The fundamental concepts of "choice", "ordering" and "information" unify physics, mathematics, and philosophy and should be related to their shared foundations.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en