Debreu's open gap lemma for semiorders

Fiche du document

Auteur
Date

1 octobre 2020

Type de document
Périmètre
Identifiants
Collection

arXiv

Organisation

Cornell University




Citer ce document

A. Estevan, « Debreu's open gap lemma for semiorders », arXiv - économie, ID : 10.1016/j.jmp.2023.102754


Métriques


Partage / Export

Résumé 0

The problem of finding a (continuous) utility function for a semiorder has been studied since in 1956 R.D. Luce introduced in \emph{Econometrica} the notion. There was almost no results on the continuity of the representation. A similar result to Debreu's Lemma, but for semiorders, was never achieved. Recently, some necessary conditions for the existence of a continuous representation as well as some conjectures were presented by A. Estevan. In the present paper we prove these conjectures, achieving the desired version of Debreu's Open Gap Lemma for bounded semiorders. This result allows to remove the open-closed and closed-open gaps of a subset $S\subseteq \mathbb{R}$, but now keeping the constant threshold, so that $x+1

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en