Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities

Fiche du document

Date

1 mars 2018

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1128/AEM.02470-17

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/29330190

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1098-5336

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_2AE5BFCFFB657

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer




Citer ce document

J.G. Kraemer et al., « Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities », Serveur académique Lausannois, ID : 10.1128/AEM.02470-17


Métriques


Partage / Export

Résumé 0

It has been hypothesized that the environment can influence the composition of the nasal microbiota. However, the direct influence of pig farming on the anterior and posterior nasal microbiota is unknown. Using a cross-sectional design, pig farms (n = 28) were visited in 2014 to 2015, and nasal swabs from 43 pig farmers and 56 pigs, as well as 27 air samples taken in the vicinity of the pig enclosures, were collected. As controls, nasal swabs from 17 cow farmers and 26 non-animal-exposed individuals were also included. Analyses of the microbiota were performed based on 16S rRNA amplicon sequencing and the DADA2 pipeline to define sequence variants (SVs). We found that pig farming is strongly associated with specific microbial signatures (including alpha- and beta-diversity), which are reflected in the microbiota of the human nose. Furthermore, the microbial communities were more similar within the same farm compared to between the different farms, indicating a specific microbiota pattern for each pig farm. In total, there were 82 SVs that occurred significantly more abundantly in samples from pig farms than from cow farmers and nonexposed individuals (i.e., the core pig farm microbiota). Of these, nine SVs were significantly associated with the posterior part of the human nose. The results strongly indicate that pig farming is associated with a distinct human nose microbiota. Finally, the community structures derived by the DADA2 pipeline showed an excellent agreement with the outputs of the mothur pipeline which was revealed by procrustes analyses. IMPORTANCE The knowledge about the influence of animal keeping on the human microbiome is important. Previous research has shown that pets significantly affect the microbial communities of humans. However, the effect of animal farming on the human microbiota is less clear, although it is known that the air at farms and, in particular, at pig farms is charged with large amounts of dust, bacteria, and fungi. In this study, we simultaneously investigated the nasal microbiota of pigs, humans, and the environment at pig farms. We reveal an enormous impact of pig farming on the human nasal microbiota which is far more pronounced compared to cow farming. In addition, we analyzed the airborne microbiota and found significant associations suggesting an animal-human transmission of the microbiota within pig farms. We also reveal that microbial patterns are farm specific, suggesting that the environment influences animals and humans in a similar manner.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en