The Impact of Caloric and Non-Caloric Sweeteners on Food Intake and Brain Responses to Food: A Randomized Crossover Controlled Trial in Healthy Humans.

Fiche du document

Date

15 mai 2018

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.3390/nu10050615

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/29762471

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2072-6643

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_E9F32B8693BD4

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/




Citer ce document

C. Crézé et al., « The Impact of Caloric and Non-Caloric Sweeteners on Food Intake and Brain Responses to Food: A Randomized Crossover Controlled Trial in Healthy Humans. », Serveur académique Lausannois, ID : 10.3390/nu10050615


Métriques


Partage / Export

Résumé 0

Whether non-nutritive sweetener (NNS) consumption impacts food intake behavior in humans is still unclear. Discrepant sensory and metabolic signals are proposed to mislead brain regulatory centers, in turn promoting maladaptive food choices favoring weight gain. We aimed to assess whether ingestion of sucrose- and NNS-sweetened drinks would differently alter brain responses to food viewing and food intake. Eighteen normal-weight men were studied in a fasted condition and after consumption of a standardized meal accompanied by either a NNS-sweetened (NNS), or a sucrose-sweetened (SUC) drink, or water (WAT). Their brain responses to visual food cues were assessed by means of electroencephalography (EEG) before and 45 min after meal ingestion. Four hours after meal ingestion, spontaneous food intake was monitored during an ad libitum buffet. With WAT, meal intake led to increased neural activity in the dorsal prefrontal cortex and the insula, areas linked to cognitive control and interoception. With SUC, neural activity in the insula increased as well, but decreased in temporal regions linked to food categorization, and remained unchanged in dorsal prefrontal areas. The latter modulations were associated with a significantly lower total energy intake at buffet (mean kcal ± SEM; 791 ± 62) as compared to WAT (942 ± 71) and NNS (917 ± 70). In contrast to WAT and SUC, NNS consumption did not impact activity in the insula, but led to increased neural activity in ventrolateral prefrontal regions linked to the inhibition of reward. Total energy intake at the buffet was not significantly different between WAT and NNS. Our findings highlight the differential impact of caloric and non-caloric sweeteners on subsequent brain responses to visual food cues and energy intake. These variations may reflect an initial stage of adaptation to taste-calorie uncoupling, and could be indicative of longer-term consequences of repeated NNS consumption on food intake behavior.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en