Dynamic Large Financial Networks via Conditional Expected Shortfalls

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ejor.2021.06.037

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess




Citer ce document

Giovanni Bonaccolto et al., « Dynamic Large Financial Networks via Conditional Expected Shortfalls », HALSHS : archive ouverte en Sciences de l’Homme et de la Société, ID : 10.1016/j.ejor.2021.06.037


Métriques


Partage / Export

Résumé En

In this article, we first generalize the Conditional Auto-Regressive Expected Shortfall (CARES) model by introducing the loss exceedances of all (other) listed companies in the Expected Shortfall related to each firm, thus proposing the CARES-X model (where the ‘X’, as usual, stands for eXtended in the case of large-dimensional problems). Second, we construct a regularized network of US financial companies by introducing the Least Absolute Shrinkage and Selection Operator in the estimation step. Third, we also propose a calibration approach for uncovering the relevant edges between the network nodes, finding that the estimated network structure dynamically evolves through different market risk regimes. We ultimately show that knowledge of the extreme risk network links provides useful information, since the intensity of these links has strong implications on portfolio risk. Indeed, it allows us to design effective risk management mitigation allocation strategies.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines